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Abstract. We investigate the effect of dilution after learning on the generalization ability
of single-layer Boolean perceptrons that learn from noisy examples. We present a thorough
comparison between the relative performances of several well known learning rules. In
particular, we show that the effect of dilution is always deleterious, and that the Bayes algorithm
always gives the best generalization performance.

0. Introduction

Most neural networks researchers today agree that the generalization error, rather than the
training error, is a more appropriate measure for the performance of feed-forward neural
networks that learn an input/output mapping from a limited number of examples. Although
it had long been known that the Bayes rule gives the optimal generalization performance for
this type of task (Duda and Hart 1973), it was the statistical mechanics approach initiated by
Gardner (1988) that made possible the analytical calculation of the optimal generalization
error for the linearly separable binary classification problem (Opper and Haussler 1991a, b).
More recently, Watkin (1993) has shown that the Bayes algorithm can be implemented by
a single-layer perceptron, while Kinouchi and Caticha (1996) have actually presented an
algorithm to determine the weights of this Bayesian perceptron. An issue that has remained
unaddressed in this search for the optimal performance is the robustness of the resulting
network against the deletion of a fraction of its weights. In practical applications, this may
become a major selection criterion for learning algorithms.

In this paper we investigate analytically the effect of the elimination of weights (dilution)
on the generalization performance of single-layer Boolean perceptrons that learn from noisy
examples. More specifically,after the learning process has finished, we set to zero the
(1 − δ)N smaller weights, whereN is the total number of weights and 06 δ 6 1 is a
parameter that controls the degree of dilution. We think that the deletion of the smaller
weights, rather than random deletion, is a somewhat more realistic model of damage in
neural networks, since the smaller weights are more likely to be affected by damage than
the larger ones. Our main conclusions, however, do not depend on the sizes of the deleted
weights or on the randomness of the dilution process.

Since we are interested in probing the robustness of the learning rules against the cutting
of weights, we have focused only on the problem of dilution after learning. The problem of
dilution during the learning process in single-layer Boolean perceptrons has been addressed
by Boutenet al (1990) for the random mapping problem and by Kuhlmann and Müller
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(1994) for the problem of learning from examples. The analysis of this type of dilution
aims at determining the best training performance that a diluted network can achieve: the
particular weights to be deleted are determined by the learning process in order to minimize
the training energy. Since in this case the dilution process is correlated with the learning
process, it is clearly not appropriate to model damage in neural networks and so it has little
relevance to our investigation of the robustness of learning rules against the deletion of
weights.

In the following, we evaluate and compare the performances of diluted perceptrons that
learn from noisy examples using the following learning rules or algorithms: the pseudo-
inverse rule, the Hebb rule, the Gibbs algorithm, the optimal stability algorithm and the
Bayes algorithm. We mention that, to the best of our knowledge, we are not aware of any
extensive comparison between the performances of these well known learning rules for the
problem of learning from noisy examples.

The neural network we consider consists ofN binary input unitssi = ±1, N synaptic
weightswi and a single Boolean output unit

σ = sign

(
1√
N

N∑
i=1

wisi

)
. (1)

The task of this perceptron (student) is to realize the mapping between the 2N possible
input configurations{s} and their respective outputs{t} generated by another perceptron
(teacher),

t = sign

(
1√
N

N∑
i=1

w0
i si

)
(2)

where the weightsw0
i are statistically independent, Gaussian distributed random variables

of zero mean and unit variance. To achieve this task, the student perceptron is trained
with P = αN noisy input/output pairs{sl , ζ l} (l = 1, . . . , P ) whereζ l is drawn from the
conditional probability distribution

P(ζ l|t l) = (1 − χ)δ(ζ l − t l) + χδ(ζ l + t l) (3)

and t l is the teacher’s output to inputsl . The components of the input vectors are chosen
randomly as±1 with equal probabilities. The parameter 06 χ 6 1

2 measures the noise
intensity: the largerχ , the larger the noise.

In order to characterize the performance of the diluted student perceptron in classifying
correctly a randomly chosen input vector for atypical realization of the training set, we
introduce the average generalization error, which in the Boolean case is given by (Györgyi
and Tishby 1989, Seunget al 1992)

εg = 1

π
arccos

(
Rδ√
Qδ

)
(4)

where

Qδ =
〈

1

N

∑
i

w2
i 2(|wi | − a)

〉
(5)

and

Rδ =
〈

1

N

∑
i

w0
i wi2(|wi | − a)

〉
. (6)
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Here 2(x) = 1 if x > 0 and 0, otherwise. The relation between the cut-offa and the
degree of dilutionδ is simply

δ =
〈

1

N

∑
i

2(|wi | − a)

〉
. (7)

The noise-free generalization error measures the probability of the diluted student perceptron
failing in outputtingt = sign(

∑
j w0

j sj ) for the randomly chosen input vectors. The notation
〈· · ·〉 stands for the averages overζ l , sl

i and w0
i . We note that in the case of the Gibbs

algorithm the set of weights generated by the algorithm is not unique, so this notation also
stands for an average over the ensemble of weights that minimize the corresponding free
energy. For a thorough discussion of the problem of learning from examples in neural
networks we refer the reader to Watkinet al (1993).

The equilibrium properties of the perceptrons generated by the learning rules we consider
in this paper can be obtained by minimizing a training energy functionE(w), which depends
on the weightsw only through the stabilities

1l = ζ l

√
N

∑
i

wis
l
i . (8)

The specific form of the functionE
({1l}) depends of course on the learning rule considered.

We have found that the effect of dilution for all such rules is a simple rescaling of the non-
diluted order parametersQ1 and R1. More specifically,Qδ = 3δQ1 and Rδ = 3δR1

where

3δ = δ +
√

2

π
λe−λ2/2 (9)

andλ is the unique solution of

δ = 2H(λ). (10)

Here H(x) = ∫ ∞
x

Dt and Dt = dt/
√

2πe−t2/2 is the Gaussian measure. We note that
3δ ∈ [0, 1] is a monotonically increasing function ofδ ∈ [0, 1]. Hence the average
generalization error (4) becomes

εg = 1

π
arccos

(√
3δ

R1√
Q1

)
. (11)

In the appendix we present the proof of the general result that the effect of anydeterministic
procedure for deleting weights after learning is a rescaling of the non-diluted order
parametersQ1 and R1. Furthermore, as pointed out there, a similar rescaling also holds
for the random deletion of weights. Thus, the effect of dilution after learning in single-
layer Boolean perceptrons is always deleterious, even in the case of noisy examples. This
contrasts with the findings for the linear perceptron, for which the deletion of weights can
actually improve the generalization performance in the case of learning from noisy examples
(Barbato and Fontanari 1995). The reason for this discrepancy is as follows. As pointed
out in the appendix, the rescaling of the non-diluted order parameters holds for the linear
perceptron as well, so the average generalization error for the diluted linear perceptron
becomesεg = 1 − 3δ(2R1 − Q1) (Seunget al 1992, Barbato and Fontanari 1995). For
noiseless examples,χ = 0, one hasR1 > Q1/2 for all α, so that the generalization error
decreases with increasingδ. Hence the effect of dilution is deleterious. In the case of noisy
examples, for any fixedχ > 0 there is a range ofα for which R1 < Q1/2 so that the
generalization error decreases with decreasingδ; the effect of dilution is beneficial in this
case.
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We now proceed with the evaluation ofQ1 and R1 for the several learning rules
mentioned above. As these calculations are standard (Gardner and Derrida 1988, Seung
et al 1992) we will present the final results only.

1. The pseudo-inverse rule

In the case of the pseudo-inverse rule, the weights are obtained by minimizing the training
energy (Opperet al 1990)

E(w) = 1

2

∑
l

(
1 − ζ l

√
N

∑
i

wis
l
i

)2

. (12)

For α 6 1, the minimum is not unique, so we must choose the one with the minimal
norm. It yields

Q1 = α

π

π − 2α(1 − 2χ)2

1 − α
(13)

and

R1 =
√

2

π
α(1 − 2χ). (14)

For α > 1, we find

Q1 = 2(α − 2)(1 − 2χ)2 + π

π(α − 1)
(15)

and

R1 =
√

2

π
(1 − 2χ). (16)

These results agree with those obtained by Opperet al (1990) for the noiseless case. For
largeα we find

εP
g ≈ 1√

2πα(1 − 2χ)2

[
1 − 2

π
(1 − 2χ)2

]1/2

(17)

for δ = 1, and

εP
g ≈ 1

π
arccos

√
3δ +

(
3δ

1 − 3δ

)1/2 1

4α(1 − 2χ)2

[
1 − 2

π
(1 − 2χ)2

]
(18)

for δ < 1.

2. The Hebb rule

The problem of learning a linearly separable mapping using the Hebb rule was investigated
by Vallet (1989). Here we generalize that analysis by including noise. Although the Hebbian
prescription for writing the weightswi in terms of the training set{sl , ζ l} is exceedingly
simple, and the analysis of the effects of dilution becomes much easier if we note that the
Hebbian weight vector minimizes the training energy (Griniasty and Gutfreund 1991)

E(w) = −
∑

l

ζ l

√
N

∑
i

wis
l
i (19)
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with Q1 = 1 fixed. The result forR1 is simply

R1 =
√

2α(1 − 2χ)2

π + 2α(1 − 2χ)2
(20)

which coincides with the result obtained by Vallet (1989) forχ = 0. In the limit of large
α we find

εH
g ≈ 1√

2πα(1 − 2χ)2
(21)

for δ = 1, and

εH
g ≈ 1

π
arccos

√
3δ +

(
3δ

1 − 3δ

)1/2 1

4α(1 − 2χ)2
(22)

for δ < 1. Thus, in this limit we haveεH
g > εP

g for all χ .

3. The Gibbs algorithm

The Gibbs algorithm chooses a weight vectorw at random according to the Gibbs probability
distribution

Pr(w) = 1

Z
exp[−βE(w)] (23)

where

E(w) =
∑

l

2

(
κ − ζ l

√
N

∑
i

wis
l
i

)
(24)

is the training energy,β is the inverse temperature, and the normalization factorZ is the
partition function. Hereκ > 0 is the margin parameter. The normalization of the weights
is not relevant (it gives the scale ofκ), so we takeQ1 = 1, as usual. Within the replica-
symmetric framework, the ensemble of weights generated by (23) is characterized by the
order parametersR1 andq that extremize the free energy density

− βf = 1

2

[
q − R2

1

1 − q
+ ln(1 − q)

]
+α

∫
Dt [χ + (1 − 2χ)H(ξ1)] ln[e−β + (1 − e−β)H(ξ2)] (25)

where

ξ1 = R1t√
q − R2

1

(26)

and

ξ2 = κ + √
qt√

1 − q
. (27)

We restrict our analysis to the limitβ → ∞ with κ 6 κc(α, χ), so that the algorithm
is consistent, i.e. the training set is learned perfectly (zero average training error). Using
standard techniques (de Almeida and Thouless 1978), we have verified that only in this
regime is the replica-symmetric saddle point locally stable. In figure 1 we presentκc as a
function of α for several values ofχ . Note that the curve forχ = 0 never intersects the
α-axis. Although a careful choice of the margin parameter can considerably improve the
generalization performance of the Gibbs algorithm (Meir and Fontanari 1992), we will only
consider the standard choiceκ = 0 in this paper.
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Figure 1. The largest value of the margin parameterκ for which the zero-temperature Gibbs
algorithm is consistent as a function of the training set sizeα for, from top to bottom,χ = 0,
0.1, 0.3 and 0.5.

4. The optimal stability algorithm

The equilibrium properties of the unique weight vector generated by the optimal stability
algorithm (Krauth and Mezard 1987) is obtained by extremizing the zero temperature free
energy (25) atκ = κc(α, χ), i.e. at the largest value of the margin parameter for which the
zero temperature Gibbs algorithm is consistent (Opperet al 1990).

5. The Bayes optimal classification algorithm

Given a randomly chosen input vectors, we can divide the ensemble of weight vectors
generated according to the Gibbs distribution (23) into two disjoint sets, such that the
weight vectors belonging to the first set will classifys as+1, while the ones belonging to
the second will classifys as−1. The weighted majority algorithm tells us to classify that
input vector according to the classification of the largest set. The Bayes optimal classification
algorithm is identical to this majority algorithm, except that the temperature of the Gibbs
distribution depends on the noise parameter (Opper and Haussler 1991b)

β = ln
1 − χ

χ
. (28)

We note that for this particular temperature the extrema of the free energy (25) areq = R1,
whereR1 is the solution of the equation

R1√
1 − R1

= α

π
(1 − 2χ)2

∫
Dt

e−R1t
2/2

χ + (1 − 2χ)H
(√

R1t
) . (29)

In view of the results of Watkin (1993) and Kinouchi and Caticha (1996) mentioned before,
we can write the noise-free generalization error for the diluted Bayes perceptron as (Opper
and Haussler 1991a, b)

εB
g = 1

π
arccos

(√
3δR1

)
(30)
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with R1 given by the solution of equation (29). In the limit of largeα the optimal
generalization error is given by

εB
g ≈ 1

πα4(1 − 2χ)2
(31)

for δ = 1, and

εB
g ≈ 1

π
arccos

√
3δ +

(
3δ

1 − 3δ

)1/2 1

2πα242(1 − 2χ)4
(32)

for δ < 1. Here

4 = 1

π

∫
Dt

e−t2/2

χ + (1 − 2χ)H(t)
. (33)

We now turn to the analysis of our results. Forδ = 1 andχ = 0, we present in figure 2
the generalization error as a function ofα for the five learning algorithms discussed above.
This is essentially the figure presented by Opperet al (1990), except for the inclusion
of the Gibbs and Bayes learning curves. In figure 3 we present the generalization error
for non-diluted networks (δ = 1) which learn from noisy examples (χ = 0.1). Note the
surprisingly good performance of the pseudo-inverse and Hebb rules. The learning curves
for the optimal stability and the Gibbs algorithm are presented only forα 6 2.992, since
beyond this value the replica-symmetric solution is locally unstable. Although the dilution
does not alter the rank of the learning rules, it does decrease the difference between their
relative performances. In fact, for smallδ the generalization performances of all algorithms
tend to that of the random guessing (εg ≈ 0.5). We note that, at least for single-layer
Boolean perceptrons, the strategy of pruning the smaller weights to avoid overfitting in the
case of learning from noisy examples actually worsens the generalization performance of
the network.

Figure 2. Average generalization errorεg as a function of the training set sizeα for the pseudo-
inverse rule (chain curve), the Hebb rule (dotted curve), the Gibbs algorithm (upper full curve),
the optimal stability algorithm (broken curve) and the Bayes algorithm (lower full curve). The
parameters areδ = 1 andχ = 0.



7010 D M L Barbato and J F Fontanari

Figure 3. Same as figure 2 but forδ = 1 andχ = 0.1.

It is clear from the proof presented in the appendix that anydeterministicprocedure
for deleting weights of a single-layer Boolean perceptronafter the learning procedure has
finished will not alter the performance rank of the learning algorithms. Thus the Bayes
algorithm will always give the optimal generalization performance. This conclusion also
seems to hold for the case ofrandom dilution. The validity of this general result relies on
the assumptions that the training energy depends on the weights only through the stabilities
of the patterns (8) and that the replica-symmetric saddle point is stable. The former is
clearly satisfied for all the learning rules considered in this paper, while the fulfilment of
the latter was verified by a standard stability calculation (de Almeida and Thouless 1978).

We have also investigated the effect of noise acting on the input patterns instead of on
the output bits. More specifically, we have considered the case in which each componentsi

is flipped with a probability(1 − γ )/2 where 06 γ 6 1 (Györgyi and Tishby 1989). For
the pseudo-inverse and Hebb rules we have found a simple relation between the two noise
parameters, namely,γ = 1 − 2χ . For the Gibbs learning rule, however, there is no such
relation, although the behaviour pattern of the generalization error is qualitatively the same
for both types of noise.

In summary, we have addressed the important problem of the robustness of the learning
rules against cutting of weights after the learning process has finished. We have found that,
under quite general conditions, the effect of dilution is a rescaling of the order parameters that
measure the norm of the weights of the non-diluted student perceptron and its overlap with
the teacher perceptron. As a result, the dilution will not alter the performance rank of the
learning rules. Furthermore, we have presented a thorough comparison of the generalization
performances of several well known learning rules for the problem of learning from noisy
examples. In doing so, we have generalized previous analyses of the Hebb rule (Vallet
1989), the pseudo-inverse rule and the optimal stability algorithm (Opperet al 1990) by
including the effects of noise in the training examples. Moreover, we have compared the
performance of these learning rules with that of the Bayes optimal algorithm, which provides
a natural standard for this kind of analysis.
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Appendix

In this appendix we present the proof that the effect of anydeterministicprocedure for
deleting weights in a single-layer perceptron is a simple rescaling of the non-diluted physical
order parametersQ1 andR1. In the following we focus on the calculation ofQδ, which is
given by

Qδ = − 1

βN

∂

∂h
〈ln Z〉|h=0 (34)

whereZ = ∑
w exp(−βÊ) and we have introduced the auxiliary energy

Ê(w) = E(w) + h
∑

i

w2
i F2(wi, δ). (35)

The dependence on the learning rule appears through the training energyE(w) = E({1l}).
The deterministic procedure for cutting(1 − δ)N weights is modelled by the function
F(wi, δ) that must satisfyF(wi, 0) = 0 andF(wi, 1) = 1. In the case of the deletion of
the smaller weights we haveF(wi, δ) = 2(|wi | − a) with a given by equation (7). As
usual, we evaluate the averages over the statistically independent random variablessl

i , ζ l

andw0
i through the replica method which consists of using the identity

〈ln Z〉 = lim
n→0

1

n
ln〈Zn〉 (36)

evaluating〈Zn〉 for integern and then analytically continuing ton = 0. The calculation of
〈ln Z〉 within the replica-symmetric framework in the limitN → ∞ is standard (Gardner
and Derrida 1988, Seunget al 1992) and yields

1

N
〈ln Z〉 = R1R̂1 − 1

2q1q̂1 + Q1Q̂1 + α[(1 − χ)G+
1 + χG−

1 ] + G2 (37)

where

G±
1 =

∫
Dz

∫
dy dŷ

2π
e−ŷ2/2+iyŷ ln

∫
dx dx̂

2π
eixx̂

× exp[− 1
2(Q1 − q1)x̂

2 + i
√

q1zx̂ − R1x̂ŷ − βE(±x signy)] (38)

and

G2 =
∫

Dz

∫
Dw0 ln

∫
dw exp[H(w, w0, z) − βhw2F2(w, δ)]. (39)

Here,

H(w, w0, z) = −(Q̂1 − q̂1/2)w2 + i
√

q̂1wz − R̂1ww0 (40)

is an effective Hamiltonian whose form is independent ofE(w) and so of the learning rule.
The saddle-point parameters(Q̂1, R̂1, q̂1, Q1, R1, q1) are determined by extremizing (37)
for h = 0. Hence equation (34) yields

Qδ =
∫

Dz

∫
Dw0

∫
dw w2F2(w, δ) exp[H(w, w0, z)]∫

dw exp[H(w, w0, z)]
. (41)
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Finally, by first evaluating the integral overw in the denominator, the remaining Gaussian
integrals overz andw0 can easily be performed, yielding

Qδ = Q1

∫
Dw w2F2

(√
Q1w, δ

)
. (42)

To calculateRδ we add the auxiliary termh
∑

i w
0
i wiF(wi, δ) to the training energy

E(w) and follow the procedure given above. The final result is

Rδ = R1

∫
Dw w2F

(√
Q1w, δ

)
. (43)

In particular, for the deletion of the(1 − δ)N smaller weights we obtainQδ = 3δQ1 and
Rδ = 3δR1 with 3δ given in (9). It is interesting to note that the above results are valid for
the linear perceptron as well, since the choice of the transfer function of the input neurons
affects only the termG±

1 in the equation (37).
We have also considered a stochastic dilution procedure in which each weightwi is set

to zero with a probability 1− δ, so that there will be on averageδN non-vanishing weights.
This can be achieved by calculating the order parameters

Qδ =
〈

1

N

∑
i

w2
i c

2
i

〉
(44)

and

Rδ =
〈

1

N

∑
i

wiw
0
i ci

〉
(45)

where the bar indicates an average over the statistically independent random variablesci

which can assume the values 0 and 1 with a probability 1− δ and δ, respectively. In this
case the rescaling of the non-diluted order parameters is trivial:Qδ = δQ1 andRδ = δR1.
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